Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Book

Lightweight MagnesiumTechnology 2001- 2005

2006-03-20
The advancements and expanded usage of magnesium by the automotive industry are highlighted in this publication which contains 46 SAE Technical Papers presented by technology experts at SAE events from 2001 -2005. This information will aid in improving processes, developing new applications, and identifying new technologies to further the competitive edge of magnesium as a lightweight, recyclable, and viable metal to meet global automotive needs. An increased awareness of the benefits ands features of this light weight structural material has opened a wide range of applications within the automotive industry. Examples include instrument panel structures, seat frames, center consoles, transmission cases, front-end and radiator support structures, and hybrid magnesium powertrains. The advancement continues toward developing even higher-performing alloys to further the competitive edge of magnesium.
Technical Paper

Physical and Virtual Prototyping of Magnesium Instrument Panel Structures

2005-04-11
2005-01-0726
This paper reviews the current strategies for physical prototyping of Magnesium instrument panel (I/P) structures. Bottlenecks in the traditional physical prototype based product development process are discussed. As demand for fast-to-market and cost-reduction mounts, virtual prototyping becomes increasingly important in meeting the timing and performance goals. A virtual prototyping methodology is presented in this paper to enable high performance Magnesium I/P structures in Safety, NVH, and initial part quality aspects. Examples of Finite Element Analysis (FEA) results and correlations are included.
Technical Paper

A Case Study of a Die-Cast Magnesium Structure Supporting Transmission Shifter Mechanisms and Interfaced with other Structural Systems

2004-03-08
2004-01-0130
During the last several years the use of magnesium die-castings for automotive applications has been on the rise. Magnesium's use in die-cast form has been expanding at an average growth rate of more than 15% a year. Reasons for the increase are both practical and economic. Magnesium die-castings offer components having the lowest mass when compared to almost any other structural material. Magnesium die-alloys exhibit properties that bridge the gap between engineered plastics and metals. The mechanical performance ratios (strength-to-weight and stiffness-to-weight) of magnesium also compete favorably with metals and plastics. Economically, magnesium alloys prices have fallen during the last several years making them extremely competitive with other materials.
X