Refine Your Search

Topic

Search Results

Author:
Technical Paper

Mathematical Analysis of Tire Delamination & Rupture Failures

2017-03-28
2017-01-1509
We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
Journal Article

Friction on Polished vs. Newly Re-Rocked Oil-and-Chip Roadway Surfaces

2016-04-05
2016-01-1568
Roadway tractive capabilities are an important factor in accident reconstruction. In the absence of full-scale experiments, tire/road coefficient of friction values are sometimes quoted from reference textbooks. For the various types of road construction, the values are given only in the form of a wide range. One common roadway type is oil-and-chip construction. We examine stopping distances for newly-rocked oil-and-chip roads vs. similarly constructed roads that have been traffic-polished. The examination was conducted through full-scale braking experiments with instrumented vehicles. Results show that the differences between newly-rocked oil-and-chip roads when compared to roads that are traffic-polished are on the same order as vehicle, tire and ABS algorithm differences, and that full-scale testing is required for accurate μ-values.
Technical Paper

Vehicle Dynamics Simulation Associated with Pothole Encounters Using the HVE SIMON Program and Radial Spring Tire Model

2015-04-14
2015-01-1572
Deteriorated roadway surfaces (potholes) encountered under everyday driving conditions may produce external vehicle disturbance inputs that are both destabilizing and highly transient. We examine vehicle behavior in response to such inputs through simulation. Idealized pothole geometry configurations are used to represent deteriorated roadway surfaces, and as environments in the HVE simulation suite of programs. Differences in vehicle response and behavior are cataloged, and the potential for destabilized vehicle behavior is examined, particularly under conditions in which only one side of the vehicle contracts the pothole. Vehicle types used in the simulation ensemble represent three classes of vehicles: a sedan, a sports car and an SUV. Results show that many combinations of vehicle speed, vehicle type and pothole configuration have essentially no destabilizing effects on the vehicle trajectory.
Technical Paper

Simulation of Transient Maneuver Hydroplaning Events Using HVE

2014-04-01
2014-01-0122
Recent research into the phenomenon of tire hydroplaning has concentrated on the effects of possible path clearing of the rear tires by the front tires. When this occurs, the rear tire behavior and hydroplaning properties will be different from what would occur had the tire been running in an undisturbed flow field. In the present work, we modify rear tire properties to simulate the path clearing effect and utilize the SIMON/HVE suite of simulation programs with a standardized double lane change maneuver to examine path clearing potential during transient vehicle behavior.
Technical Paper

Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS)

2013-04-08
2013-01-0407
Various mechanical and electromechanical configurations have been proposed for the recapture of vehicle kinetic energy during deceleration. For example, in Formula One racing, a KERS (Kinetic Energy Recovery System) was mandated by the FIA for each racing car during the 2011 World Championship season and beyond, and many passenger car manufacturers are examining the potential for implementation of such systems or have already done so. In this work, we examine the potential energy savings benefits available with a KERS, as well as a few design considerations. Some sample calculations are provided to illustrate the concepts.
Journal Article

Estimating Path Clearing Effects during Potential Hydroplaning through the Use of Vehicle CAN Bus Data

2013-04-08
2013-01-0408
During wet weather operating conditions, tire hydroplaning can occur, potentially altering the handling characteristics of a vehicle. The rear tires of the vehicle run in a path previously cleared by the front tires under some operating conditions. Although path clearing has been previously demonstrated both analytically and qualitatively, it is difficult to estimate the changes in the tire/road coefficient of friction resulting from path clearing because of the complexity of the hydroplaning flow regime. In the present work, we utilize wheelspeed information captured from the vehicle CAN bus and photography to examine potential variations in tire/road coefficient of friction that result from path clearing. Results suggest that differences in friction availability may result from such path clearing. Maneuvers performed include steady-state cornering tests, straight-line braking and ISO lane change maneuvers.
Technical Paper

Calculating Tire Overlap during Steady-State Cornering Maneuvers

2012-04-16
2012-01-0242
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, tire overlap is calculated for vehicles in steady-state cornering maneuvers for generalized vehicle dimensions and tire characteristics.
Technical Paper

Potential for Hydroplaning Behavior during Transient Maneuvers

2012-04-16
2012-01-0211
Recent research on the effects of tire hydroplaning has examined the hydroplaning phenomenon and its potential effects on vehicle maneuvering from (1) geometric, (2) straight line braking/acceleration and (3) steady-state cornering maneuver points of view. In this work, we focus on the potential for hydroplaning during a transient maneuver: a standardized double lane change maneuver (ISO3888-1). Using both closed-form calculations and the HVE software suite, it is shown that partial hydroplaning has only a small-to- moderate potential to occur during portions of such maneuvers, but is not likely throughout the entire duration of the maneuver.
Journal Article

Hydroplaning Behavior during Steady- State Cornering Maneuvers

2011-04-12
2011-01-0986
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, a hydroplaning analysis is presented that examines steady-state cornering under potential hydroplaning situations and includes lateral weight transfer, tire load sensitivity and path clearing potential. The sensitivity of vehicle understeer/oversteer characteristics to path clearing and vehicle dimensional characteristics is also examined.
Technical Paper

Experimental Measurements of the Effect of Path Clearing on Hydroplaning Behavior

2011-04-12
2011-01-0975
Vehicles operating in wet conditions may experience hydroplaning of one or more tires. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water coated surface first. An experimental program was developed to study tire/road behavior during straight line braking maneuvers on a wet surface. Wheel rpm values were measured with operating ABS via CAN bus data. The experiments allowed qualitative estimation and visualization of the effects of path clearing on rear tires.
Technical Paper

Force and Moment Characteristics of a Low Aspect Ratio Asymmetrically Worn Passenger Car Tire

2010-04-12
2010-01-0766
Many vehicles are equipped with independent suspension systems on the front and/or rear axle. As opposed to a DeDion or beam axle, independent suspension systems have the potential to generate camber and toe changes as the suspension strokes from full jounce to full rebound. Each vehicle suspension design presents unique camber and toe curves to the tire. To improve handling, manufacturers often set static camber on such vehicle suspension systems to nonzero values so that when cornering, the outside suspension will deflect so as to maximize cornering power and vehicle stability. Then, under straight driving conditions, the tires tend to predominantly wear their inside shoulder edges, producing the phenomenon known as camber wear.
Technical Paper

Road Bicycle Dynamics in the Presence of Idealized Roadway Irregularities

2010-04-12
2010-01-0053
Bicycle accidents may occur in the presence of roadway asperities, discontinuities and other pavement failure modes and conditions. We examine the dynamics of ramp-climbing and potential pitchover by the rider when idealized asperities are encountered from a theoretical point of view, and derive an expression for the speed at which pitchover will occur if and when a sudden stop occurs. A series of experiments was carried out in which road bicycle behavior was examined for idealized roadway asperities of known size and configuration. Finally, a series of braking experiments was performed to determine the emergency stopping potential of a road bicycle.
Technical Paper

Controlled Braking Experiments with and without ABS

2010-04-12
2010-01-0100
An experimental program to measure braking characteristics developed under emergency braking conditions by ABS-equipped vehicles was designed and performed. Variables examined included initial braking speed, vehicle type, tire pressure and data recording equipment utilized. All experiments were conducted on a closed airport taxiway constructed of sharp, brushed and heavily striated concrete. Tests were conducted with and without activated ABS systems on the test vehicles. Results showed that (1) with the ABS activated, faint roadway markings were visible only under a very few special circumstances, (2) tire/road μ-values and corresponding deceleration values varied only slightly for differing speeds and ABS conditions, (3) tire pressure made little difference in limited test results, and (4) there were differences in recorded results depending on the equipment used for data acquisition.
Technical Paper

Use of ABS in Emergency Brake-and-Steer Maneuvers

2009-04-20
2009-01-0449
We employ theoretical and experimental means to examine driver control strategies for use in emergency brake-and-steer maneuvers using ABS-equipped vehicles, and show that the admonition to simply “stand on the brakes” does not necessarily produce the desired vehicle response because the full maneuver envelope of the vehicle is not utilized. Rather, judicious use of vehicle braking in its non-ABS mode is preferred for portions of some maneuvers where maximum lateral control is desired.
Technical Paper

Road Evaluation of the Aerodynamic Characteristics of Heavy Trucks

2007-10-30
2007-01-4297
Coast down testing with full-scale vehicles on level and inclined roads offers an inexpensive approach to road load determination and, in particular, aerodynamic force evaluation, provided that drag component extractions can be accurately achieved under random instrumental disturbances and biased environmental conditions. Wind tunnel testing of large vehicles, especially truck/trailers, to establish their aerodynamic drag is costly and also may produce questionable results when the effects of the moving road, blockage, wake/diffuser interaction, and rotating tires are not properly simulated. On the road, testing is now conveniently and speedily carried out using GPS-based data acquisition and file storage on laptops, allowing instantaneous on-board data processing.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

Force and Moment Characteristics of Two Space-Saver Tires

2006-04-03
2006-01-1559
Many modern vehicles utilize so-called “space-saver” spare tires. Such tires are not fitted to the vehicle and driven on until a tire problem has arisen with a service tire, and are limited in the mileage and speed at which they can operate. They also may have quite different characteristics (rolling radius, tread pattern, contact patch width and length, aspect ratio, stiffnesses, self-aligning torques, etc.) than the service tires with which the vehicle is equipped. As such, they have the potential for presenting significantly different handling signatures to the driver when they are fitted.. In the present work, we present force and moment characteristics for two disparate space-saver spare tires. The tires were tested at the T.I.R.F. (TIre Research Facility), Calspan Corporation, Buffalo, NY.
Technical Paper

Realistic Rear Axle Hydroplaning during Forward Motion

2006-04-03
2006-01-1560
Hydroplaning behavior of a single tire running in stationary, undisturbed water of constant depth is a well-studied phenomenon, and has been examined both theoretically and experimentally. Most experimental tire studies have been conducted on drum or flat-track test machines or with towed tires, and correlative expressions for hydroplaning of a single tire have been developed from such tests. Vehicle testing, on the other hand, has typically involved full-scale, proving ground experiments in which gross vehicle motion and behavior were of interest without regard to individual tire contributions. In the present work, we examine the behavior of a vehicle with rear tires running in a path partially cleared by the front tires. Under such conditions, it can no longer be assumed that the rear tires are experiencing the same hydrodynamic conditions as the front tires, nor does their behavior correlate well with conditions obtained from individual tire testing.
Technical Paper

Behavior of a Motorcycle after an Encounter with a Road Irregularity Parallel to its Direction of Travel

2006-04-03
2006-01-1561
In the present work, we study motorcycle dynamics under conditions where the motorcycle-rider combination encounters either a step or a channel parallel to the direction of travel. Analyses are presented from the points of view of geometric, analytical and experimental approaches. As with passenger cars and trucks which encounter so-called “edge drop-offs,” the results depend on the magnitude and shape of the step or channel, velocity of the motorcycle and control input(s) of the rider, if any. Results show than for many common disturbance situations, difficulties may be experienced by the rider.
Technical Paper

What Constitutes Good Handling?

2004-11-30
2004-01-3532
The subject of qualitative and quantitative evaluation of vehicle handling has received emphasis and study since the first automobiles were constructed. Handling quality can be divided into three distinct regimes: (a) resistance to rollover, (b) steady-state behavior, and (c) transient behavior. Additionally, handling of a modern race car can and often must also be separated into handling characteristics due to mechanical grip and characteristics due to aerodynamic performance. For modern racing cars, rollover solely due to lateral acceleration is unlikely except for a few specialized types of racing cars (e.g., Bonneville). In the present work, we discuss handling from the perspectives of human control performance, vehicle metrics and handling test development. We show that from the point of view of the human operator, certain vehicle characteristics are important if emergency and high-g handling maneuvers are to have a chance of being properly executed by drivers.
X