Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Testing Methods and Signal Processing Strategies for Automatic Transmission Transient Multiplexed Pressure Data

2019-06-05
2019-01-1500
Transmissions have multiple transient events that occur from gear shifting to torque converter clutch application. These transients can be difficult to capture and observe. A six speed front wheeled drive transmission was instrumented with pressure transducers to measure clutches and the torque converter. Due to size restrictions internal to the torque converter the data had to be multiplexed across three different transmitters. A method to capture a transient event through the use of multiplexed data was developed to create a data set with the transient event occurring on each channel. Once testing is completed, the data has to be split into individual channels and synced with the operational data. The data then can be used in both time and frequency domain analysis. It is important to understand that the data is not continuous and must be taken into consideration when post processing it for further results.
Technical Paper

Sound Power Measurement in a Semi-Reverberant, Volume Deficient Chamber

2015-06-15
2015-01-2359
Sound power can be determined using a variety of methods, but precision methods require the volume of the noise source to be less than 1% of the chamber volume leading to relatively large test chambers. Automotive torque converter performance and noise testing is completed in an enclosed metallic test fixture which inhibits the use of precision methods due to volume and space limitations. This paper describes a new method developed to accurately determine sound power of an automotive torque converter in a relatively small enclosure through characterization of the test environment. The test environment was characterized using two reference noise sources designed to represent torque converter noise output and physical geometry. Sound pressure levels of the sources were measured at multiple microphone locations and at three source amplitude levels to characterize the environment.
Technical Paper

Measuring and Comparing Frequency Response Functions of Torque Converter Turbines Submerged in Transmission Fluid

2011-05-17
2011-01-1662
When testing dynamic structures, it is important to note that the dynamic system in question may be submerged into a fluid during operation and to properly test the structure under the same condition in order to understand the true dynamic parameters of the system. In this way, the mass and stiffness coupling to the particular fluid, for the case of this study, automatic transmission fluid, may be taken into account. This is especially important in light structures where the coupling between the fluid mass and the structural mass may be great. A structure was tested with a laser vibrometer using several impact methods in open air to determine which impact method would be most suitable for submerged testing. The structure was then submerged in transmission fluid with an accelerometer attached and subsequently tested and compared to the previous results.
Technical Paper

Calibrating and Protecting Microphones to Allow Acoustic Measurements in Hazardous Environments

2009-05-19
2009-01-2163
Performing acoustic measurements on or near engines, transmissions, as well as in other circumstances where the environment is hazardous and harsh for microphones requires special precautions. Fluids inevitably leak, and the possibility of transducer damage can be very high without proper protection. Properly protecting microphones during testing allows for consistent data quality in these hazardous and difficult environments. While this paper will present the use of a 5 mil Nitrile cover which protects against many fluids within the scope of automotive testing, including water, hydrocarbons, and alcohols, as well as having good heat resistance and high strength, the concepts developed are applicable to other types of microphone protective mechanisms. Acoustic sensitivity was measured and used to calculate the change of the microphone's response after the treatment is applied, as well as after being exposed to various contaminants.
Technical Paper

Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine

2009-04-20
2009-01-0843
As the incentive to produce cleaner and more efficient engines increases, diesel engines will become a primary, worldwide solution. Producing diesel engines with higher efficiency and lower emissions requires a fundamental understanding of the interaction of the injected fuel with air as well as with the surfaces inside the combustion chamber. One aspect of this interaction is spray impingement on the piston surface. Impingement on the piston can lead to decreased combustion efficiency, higher emissions, and piston damage due to thermal loading. Modern high-speed diesel engines utilize high pressure common-rail direct-injection systems to primarily improve efficiency and reduce emissions. However, the high injection pressures of these systems increase the likelihood that the injected fuel will impinge on the surface of the piston.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (2) PDPA Investigation

2006-04-03
2006-01-1003
Droplet size and velocity measurements were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). The spray for this single hole, pressure-swirl fuel injector was characterized using phase Doppler interferometry. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray profile resembled a solid cone. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1. The spray profile was mostly solid. Regime 3 comprised fuel pressures from 65 - 102 bar and MAPs from 0.36 - 0.46 bar.
Technical Paper

Cavitation Detection in Automotive Torque Converters Using Nearfield Acoustical Measurements

2005-05-16
2005-01-2516
As automotive torque converters decrease in both diameter and axial length, the effects of cavitation in the torque converter becomes increasingly important on noise, efficiency, and performance goals. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. A technique to detect cavitation in automotive torque converters using nearfield acoustical measurements is presented. The technique concentrates on high frequency noise that is associated with the collapse of vapor bubbles. The nearfield acoustical technique is compared to two other techniques using static pressure measurements inside the torque converter; one on the torque converter stator blades and the other on the torque converter pump blades. A microwave telemetry transmitter was used to obtain data from inside the torque converter in both previous investigations.
Technical Paper

Cavitation Prediction in Automotive Torque Converters

2005-05-16
2005-01-2557
As automotive torque converters decrease in both diameter and axial length, the effects of cavitation in the torque converter becomes increasingly important on noise, efficiency, and performance goals. Therefore, a cavitation prediction technique is developed in this investigation. In a previous investigation it was shown that cavitation is effected by inlet temperature, charge pressure, and K-factor. The prediction technique is devolved to encompass these variables. A dimensional analysis using the power product method is performed with all relevant variables. The nearfield acoustical cavitation detection technique, discussed in the previous investigation, is used to obtain experimental results from a torque converter test lab. The test matrix for the experimental results was constructed to include effects from inlet temperature, charge pressure, and K-factor. The data obtained experimentally is used to curve fit the results found through the power product method.
Technical Paper

Impingement Identification in a High Speed Diesel Engine Using Piston Surface Temperature Measurements

2005-04-11
2005-01-1909
The objective of this investigation was to identify the impingement event on a diesel piston surface. Eight fast-response, surface thermocouples were installed in one of the pistons of a 2.0 liter, four-cylinder, turbo-charged diesel engine (97 kW @ 3800 rpm). Piston temperatures were transmitted from the engine using wireless microwave telemetry. An impingement signal was identified on the piston bowl lip. A simple parameter for characterizing the impingement event is proposed. The results show an impingement signature at one of the bowl lip thermocouples, under specific operating conditions.
Technical Paper

Design and Testing of a Four-Stroke, EFI Snowmobile with Catalytic Exhaust Treatment

2001-09-24
2001-01-3657
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive and environmentally friendly. The following paper describes the conversion process in detail with actual engine test data. The hydrocarbon emissions of the new, four-stroke snowmobile are 98% lower than current, production, two-stroke models. The noise production of the four-stroke snowmobile was 68 dBA during an independent wide open throttle acceleration test. If the four-stroke snowmobile were to replace all current, two-stroke snowmobiles in Yellowstone National Park (YNP), the vehicles would only produce 16% of the combined automobile and snowmobile hydrocarbon emissions compared to the current 93% produced by two-stroke snowmobiles.
Technical Paper

Noise and Emission Reduction Strategies for a Snowmobile

2000-09-11
2000-01-2573
The following paper discusses alternative strategies for reducing noise and emission production from a two-stroke snowmobile. Electric, two-stroke and four-stroke solutions were analyzed and considered for entry in the Clean Snowmobile Challenge (CSC) 2000. A two-stroke solution was utilized primarily due to time constraints. Complete snowmobile competition results are provided. The electric solution, while the most effective at reducing emissions, is negatively impacted by weight and cost. A modified two-stroke solution, limited by cost and complexity, does not provide the required improvements in emissions. A four-stroke solution reduces noise and emissions and provides an acceptable trade-off between noise, emissions, performance and cost.
X